Курс лекций по “Общей экологии”. Часть 4

Биогеохимические круговороты основных биогенных элементов и их нарушение человеком

Биогеохимические циклы отдельных элементов.

В.И.Вернадский выделяет пять функций биогенных элементов: газовую, концентрационную, окислительно-восстановительную, биохимическую и биогеохимическую деятельность человека. Последняя функция в настоящее время все больше охватывает разрастающееся количество веществ земной коры, в том числе таких концентраторов углерода, как уголь, нефть, газ и других, для хозяйственных и бытовых нужд человека.

Биогеохимические циклы наиболее важных биогенных элементов.

К ним можно отнести вещества, из которых состоят белковые молекулы. К ним относятся углерод, сера, фосфор, азот, кислород.

В круговороте углерода, а точнее — наиболее подвижной его формы — СО2,четко прослеживается трофическая цепь: продуценты, улавливающие углерод из атмосферы при фотосинтезе, консументы — поглощающие углерод вместе с телами продуцентов и консументов низших порядков, редуцентов — возвращающих углерод вновь в круговорот. Скорость оборота СО2составляет порядка 300 лет (полная замена его в атмосфере).

В мировом океане трофическая цепь: продуценты (фитопланктон) — консументы (зоопланктон, рыбы) — редуценты (микроорганизмы) — осложняется тем, что некоторая часть углерода мертвого организма, опускаясь на дно, «уходит» в осадочные породы и участвует уже не в биологическом, а в геологическом круговороте.

Главным резервуаром биологически связанного углерода являются леса, они содержат до 500 млрд т этого элемента, что составляет 2/3 его запаса в атмосфере.(1) В биомассе лесов содержится в 1,5 раза, а в гумусе, содержащемся в почве, — в 4 раза больше СО2, чем в атмосфере.

Фотосинтезирующий «зеленый пояс» Земли и карбонатная система моря поддерживают постоянный уровень СО2 в атмосфере. Однако стремительное увеличение потребления горючих ископаемых, а также уменьшение поглотительной способности «зеленой пояса» приводят к тому, что содержание СО2 в атмосфере постепенно растет. Предполагают, что если уровень СО2 в атмосфере будет превышен вдвое (до начала активного влияния человека на окружающую среду он составлял 0,29%), то не исключено повышение глобальной температуры на 1,5-4,5°С. Это может привести к таянию ледников и как следствие — к повышению уровня Мирового океана, а также к неблагоприятным последствиям в сельском хозяйстве. В настоящее время в развитых государствах существует национальная научно-исследовательская программа по ведению сельского хозяйства на случай потепления или похолодания климата.

С наступлением научно-технического прогресса сбалансированные прежде потоки углерода между атмосферой, материками и океанами начинают поступать в атмосферу в количестве, которое не полностью может связаться растениями.

Помимо СО2 в атмосфере в небольших количествах присутствуют оксид углерода СО — 0,1 части на миллион и метан СН4- 1,6 части на миллион. Они образуются при неполном или аэробном разложении органического вещества и в атмосфере окисляются до СО2.

Накопление СО в глобальном масштабе не представляется реальным, но в городах, где воздух застаивается, имеет место повышение концентрации этого соединения, что негативно влияет на здоровье людей.

Круговорот кислорода. Скорость его — 2 тыс. лет. Именно за это время весь кислород атмосферы проходит через живое вещество. Основной его поставщик на Земле — зеленые растения. Ежегодно они производят на суше 53*10clip_image002[6] т кислорода, а в океанах — 414*10clip_image002[7]т.

Главный потребитель кислорода — животные, почвенные организмы и растения, использующие его в процессе дыхания. Процесс круговорота кислорода в биосфере весьма сложен, так как он содержится в очень многих химических соединениях.

Убыль кислорода в атмосфере в результате процессов дыхания, гниения и горения возмещается кислородом, выделяющимся при фотосинтезе. Вырубка лесов, эрозия почв, различные горные выработки на поверхности уменьшают общую массу фотосинтеза и снижают круговорот на значительных территориях. Наряду с этим, мощным источником кислорода является, по-видимому, фотохимическое разложение водяного пара в верхних слоях атмосферы под влиянием ультрафиолетовых лучей солнца. Подсчитано, что на промышленные и бытовые нужды ежегодно расходуется 23% кислорода, который высвобождается в процессе фотосинтеза. Предполагается, что в ближайшее время весь продуцированный кислород будет сгорать в топках, а следовательно, необходимо значительное усиление фотосинтеза и другие радикальные меры.

Таким образом, в природе непрерывно совершается круговорот кислорода, поддерживающий постоянство состава атмосферного воздуха.

Биогеохимический круговорот азота не менее сложен, чем углерода и кислорода, и охватывает все области биосферы. Поглощение его растениями ограничено, так как они усваивают азот только в форме соединения его с водородом и кислородом. И это при том, что запасы азота в атмосфере неисчерпаемы (78% от ее объема). Редуценты (деструкторы), а конкретно почвенные бактерии, постепенно разлагают белковые вещества отмерших организмов и превращают их в аммонийные соединения, нитраты и нитриты. Опасность заключается в том, что азот в виде нитратов и нитритов усваивается растениями и может передаваться по пищевым (трофическим) цепям.

Азот возвращается в атмосферу вновь с выделенными при гниении газами. Роль бактерий в цикле азота такова, что если будет уничтожено только 12 их видов, участвующих в круговороте азота, жизнь на Земле прекратится.(1)

Благодаря механизмам обратной связи, обеспечивающим саморегуляцию, круговорот азота можно назвать относительно замкнутым, если рассматривать его в масштабе крупных площадей или всей биосферы.

В современных условиях человек своей деятельностью оказывает значительное влияние на круговорот азота: увеличивает содержание азота в резервном фонде (сжигание ископаемого топлива, осушение заболоченных земель, обработка почвы и т.д.) и снижает его содержание (выращивание бобовых культур на громадных территориях, техническое связывание азота) в атмосфере.(2).

Биогеохимические циклы фосфора и серы, важнейших биогенных элементов, значительно менее совершенны, так как основная их масса содержится в резервном фонде земной коры, в «недоступном» фонде.

Круговорот серы и фосфора — типичный осадочный биогеохимический цикл. Такие циклы легко нарушаются от различного рода воздействий и часть обмениваемого материала выходит из круговорота. Возвратиться опять в круговорот она может лишь в результате геологических процессов или путем извлечения живым веществом биофильных компонентов.

Фосфор содержится в горных породах, образовавшихся в прошлые геологические эпохи. В биогеохимический круговорот он может попасть в случае подъема этих пород из глубины земной коры на поверхность суши, в зону выветривания. Эрозионными процессами он выносится в море в виде широко известного минерала — апатита.

Общий круговорот фосфора можно разделить на две части — водную и наземную. В водных экосистемах он усваивается фитопланктоном и передается по трофической цепи вплоть до консументов третьего порядка — морских птиц. Их экскременты снова попадают в море и вступают в круговорот или накапливаются на берегу и смываются в море.

Из отмирающих морских животных, особенно рыб, фосфор снова попадает в море и в круговорот, но часть скелетов рыб достигает больших глулин и заключенный в них фосфор снова попадает в осадочные породы.

В наземных экосистемах фосфор извлекают растения из почв и далее он распространяется по трофической сети. Возвращается в почву после отмирания животных и растений и с их экскрементами. Теряется фосфор из почв в результате их водной эрозии. Повышенное содержание фосфора на водных путях его переноса вызывает бурное увеличение биомассы водных растений, «цветение» водоемов и их эвтрофикацию. Большая же часть фосфора уносится в море и там теряется безвозвратно, что может привести к истощению запасов фосфорсодержащих руд (фосфоритов, апатитов и т.д.). Следовательно, надо стремиться избежать этих потерь и не ожидать того времени, когда Земля вернет на сушу «потерянные отложения».

Значительные количества фосфора вносятся на поля с удобрениями. Около 60 тыс. т фосфора ежегодно возвращается на материк с выловом рыбы. В белковом рационе человека рыба составляет от 20% до 80%, некоторые малоценные сорта рыб перерабатываются на удобрения, богатые полезными элементами, в том числе фосфором. Ежегодная добыча фосфорсодержащих пород составляет 1,5-2 млн т.(4). Деятельность человека ведет к усиленной потере фосфора, что делает круговорот недостаточно замкнутым. Важность фосфора как элемента, обеспечивающего продуктивность биосферы, со временем будет возрастать, так как уже сейчас он причисляется к редким макроэлементам. Поэтому возврат фосфора в круговорот имеет важное значение для человечества.(2).

Сера также имеет основной резервный фонд в отложениях и почве, но в отличие от фосфора у нее есть резервный фонд и в атмосфере. В обменном фонде главная роль принадлежит микроорганизмам, одни из них восстановители, другие — окислители.

В горных породах сера встречается в виде сульфидов, в растворах — в виде сульфат-иона, в газообразной фазе в форме сероводорода или сернистого газа. В некоторых организмах сера накапливается в чистом виде и при их отмирании на дне образуются залежи самородной серы.

Круговорот серы, хотя ее требуется организмами в небольших количествах, является ключевым в общем процессе продуцирования и разложения.

В наземных экосистемах сера возвращается в почву при отмирании растений, захватывается микроорганизмами, которые восстанавливают ее до Н2S. Другие организмы и воздействие самого кислорода приводят к окислению этих продуктов. Образовавшиеся сульфаты растворяются и поглощаются растениями из поровых растворов почвы — так продолжается круговорот.

Однако круговорот серы, как и азота, может быть нарушен вмешательством человека. Виной тому прежде всего сжигание ископаемого топлива, а особенно угля. Сернистый газ нарушает процессы фотосинтеза и приводит к гибели растительности.

Биогеохимические циклы легко нарушаются человеком. Так, добывая минеральные удобрения, он загрязняет воду и воздушную среду. В воду попадает фосфор, вызывая эвтрофикацию, образуются азотистые высокотоксичные соединения и др. Иными словами, круговорот становится не циклическим, а ациклическим. Охрана природных ресурсов должна быть, в частности, направлена на то, чтобы ациклические биогеохимические процессы превратить в циклические.

Человек — это геохимическая сила планетарного масштаба. Масса химических элементов, добываемых и перераспределяемых человеком за год уже давно в 2 раза больше массы, концентрируемой всеми растениями Земли, и в 4 — более переносимого всеми ее водотоками. Геохимическая деятельность человечества может быть сведена к следующему:

1. Изымание элементов, снижение локальных кларков концентраций, что не может не иметь пагубных последствий.

2. Рассеивание вокруг добычи или переработки по ареалам, не совпадающим с природными границами.

3. Транспортные перемещения по неестественным путям (за год с транспортировкой зерна в мире перевозится 1 млн т калия, по 100 тыс. т фосфора и азота.

Таким образом, всеобщий гомеостаз биосферы зависит от стабильности биогеохимического круговорота веществ природе. Но являясь планетарной экосистемой, она состоит из экосистем всех уровней, поэтому первоочередное значение для ее гомеостаза имеют целостность и устойчивость природных экосистем.

Вы здесь: Главная Экология Курс лекций по “Общей экологии”. Часть 4