Лекционный материал по дисциплине “Пищевая химия” — Классификация и номенклатура ферментов

Классификация и номенклатура ферментов

Название каждого фермента включает название субстрата, тип катализируемой реакции, и окончание «аза» (ксантиноксидаза, лактаза), кроме того используются и тривиальные названия ферментов.

Все ферменты по типу катализируемых ими реакций разделяют на шесть классов: оксидоредуктазы; трансферазы; гидролазы; лиазы; изомеразы; лигазы (синтетазы). Внимание технологов, перерабатывающих биологическое сырье, привлекают прежде всего оксидоредуктазы и гидролазы.

Оксидоредуктазы

Полифенолоксидаза может катализировать окисление моно-, ди-, и полифенолов. С действием этого фермента связано образование темноокрашенных соединений — меланинов при окислении кислородом воздуха аминокислоты тирозина (потемнение срезов картофеля, яблок, грибов и других растительных тканей). В пищевой промышленности основной интерес к этому ферменту сосредоточен на предотвращении указанного ферментативного потемнения, что может быть достигнута путем тепловой инактивации фермента (бланшировка) или добавлением ингибиторов (NaHSO3, SO2, NaCl).

Каталаза катализирует разложение пероксида водорода по реакции самоокисления-самовосстановления. В живом организме каталаза защищает клетки от губительного действия перекиси водорода. Хорошим источником для получения промышленных препаратов каталазы являются культуры микроорганизмов и печень крупного рогатого скота.

Липоксигеназа катализирует окисление полиненасыщенных высокомолекулярных жирных кислот (линолевой и линоленовой) кислородом воздуха с образованием гидроперекисей:

Липоксигеназе принадлежит важная роль в процессах созревания пшеничной муки, связанных с улучшением ее хлебопекарных достоинств. При этом происходит осветление муки, укрепление клейковины, снижение активности протеолитических ферментов и другие положительные изменения.

Глюкозооксидаза окисляет глюкозу с образованием глюконовой кислоты. Высокоочищенные препараты глюкозооксидазы получают из плесневых грибов рода Aspergillus и Penicillium.

Препараты глюкозооксидазы нашли применение в пищевой промышленности как для удаления следов глюкозы, что необходимо при обработке пищевых продуктов, качество и аромат которых ухудшаются из-за того, что в них содержатся восстанавливающие сахара; например, при получении из яиц сухого яичного порошка.

Гидролитические ферменты

Для отрасли пищевой промышленности наибольший интерес представляют три подкласса ферментов класса гидролаз. Это ферменты, действующие на сложноэфирные связи — эстеразы; действующие на гликозидные соединения — гликозидазы и действующие на пептидные связи — протеазы.

Основные ферменты подкласса эстераз

Липаза или триацилглицероллипаза широко распространена в природе. Обычно липазы катализируют реакцию расщепления триглицеридов. Причем предпочтительнее гидролизуются связи в положении 3 и 1 и лишь затем в положении 2. Установлено, что липазы быстрее отщепляют остатки высокомолекулярных жирных кислот, чем низшие карбоновые кислоты.

Пектинэстераза синтезируется высшими растениями, микроскопическими грибами, дрожжами и бактериями. Пектинэстераза катализирует гидролиз сложноэфирных связей в молекуле растворимого пектина, в результате чего образуется метиловый спирт и полигалактуроновая кислота. При этом жилирующая способность кислоты ниже, чем у самого пектина. Благодаря этим свойствам фермент пектинэстераза применяется для осветления плодовых соков и вина.

Гликозидазы.

Основной формой запасных углеводов в семенах и клубнях растений является крахмал. Ферментативные превращения крахмала лежат в основе многих пищевых технологий.

а-Амилаза. Эти ферменты обнаружены у животных (в слюне и поджелудочной железе), в растениях (проросшее зерно пшеницы, ржи, ячменя), они вырабатываются плесневыми грибами и бактериями. Все эти ферменты гидролизуют крахмал, гликоген и родственные α -1,4-гликозиды с образованием, главным образом, декстринов и небольшого количества дисахарида — мальтозы.

β-Амилаза Это группа ферментов в основном растительного происхождения. Её источниками являются зерно пшеницы, а также пшеничный и ячменный солод, соевые бобы, клубни картофеля.

β-Амилаза отщепляет мальтозу от конца гликозидной цепи, разрывая гликозидные связи α-1,4 через одну до тех пор, пока не встретится точка ветвления со связью α-1,6.

γ-амилаза продуцируется различными видами плесневых грибов рода Aspergillus. Эти ферменты расщепляют как амилозу, так и амилопектин до глюкозы. Они способны гидролизовать α -1,4 и α -1,6 гликозидные связи. Поэтому данный фермент используется в промышленности для ферментативного получения глюкозы.

Инулаза осуществляет гидродиз инулина и других полифруктозанов. В результате образуется фруктоза (95%) и глюкоза (5%).

Инулаза содержится в тех же растениях (топинамбур, цикорий), в которых присутствует инулин. Существуют инулазы микробного происхождения.

Целлюлолитические ферменты. Ферментативное разрушение целлюлозы и родственных ей полисахаридов (гемицеллюлозы, лигнина) — сложный процесс, требующий участия комплекса ферментов.

Применение целлюлолитических ферментов представляет большой интерес, т. к. может обеспечить получение различных биотехнологических продуктов (глюкозы, этанола, ацетона, микробной биомассы).

Протеолитические ферменты. Основной реакцией, катализируемой протеолитическими ферментами, является гидролиз пептидной связи в молекулах белков и пептидов.

По современной классификации различают эндо- и экзопептидазы. Ферменты первой группы (эндопептидазы) могут гидролизовать глубинные пептидные связи и расщеплять молекулу белка на более мелкие фрагменты; ферменты второй группы (экзопептидазы) не могут гидролизовать пептидные связи, находящиеся в середине цепи, и действуют либо с карбоксильного, либо с аминного конца цепи, отщепляя последовательно одну за другой концевые аминокислоты.

По типу происхождения протеазы подразделют на растительные, животные и микробные.

Протеазы животного происхождения уже давно и широко используются в пищевой промышленности.

Трипсин секретируется поджелудочной железой в виде неактивного предшественника трипсиногена. Высокоочищенный трипсин применяется для медицинских целей, а также в пищевой промышленности для производства гидролизатов.

Пепсин вырабатывается слизистой желудка в виде пепсиногена. Пепсиноген превращается в активный пепсин под действием НС1. Реннин — этот фермент имеет много сходства с пепсином и содержится в соке четвертого отдела желудка телят. Реннин образуется из предшественника — прореннина. Пепсин и ренин являются основными компонентами промышленных препаратов, используемых для свертывания молока

Микробные протеазы — чрезвычайно разнообразны и широко применяются (на их долю приходится около 40% от всех используемых верментов). Наибольшее применение нашли щелочная сериновая протеаза, которая используется в моющих средствах; грибная протеаза из Мусоr, которая заменила телячьи сычуги в производстве сыра, а грибная протеаза из A. oryzae (в комплексе с амилазой), используемая в хлебопечении.

Иммобилизованные ферменты

В различных пищевых технологиях долгое время применялись лишь препараты свободных ферментов, срок использования которых — один производственный цикл. Благодаря достижениям молекулярной биологии, биохимии и энзимологии в настоящее время организовано производство ферментов длительного (пролонгированного) действия или иммобилизованных ферментов, т. е. связанных ферментных препаратов.

Сущность иммобилизации ферментов заключается в присоединении их в активной форме тем или иным способом к изолированной фазе (инертной матрице), которая обычно нерастворима в воде и часто представляет собой высокомолекулярный гидрофильный полимер, например, целлюлозу, полиакриламид и т. п.

Иммобилизация часто приводит к изменениям основных параметров ферментативной реакции. Как правило, её скорость снижается.

Иммобилизованные ферменты как катализаторы многоразового действия можно использовать, в основном, для трех практических целей: аналитических, лечебных и препаративных (промышленных).

В случае препаративного применения основную роль играет стоимость, а также возможность автоматизации процесса. Несмотря на большие потенциальные возможности использования им­мобилизованных ферментов в производстве, в настоящее время реали­зованы лишь немногие, например: разделение D- и L-аминокислот; получение сиропов с высоким содержанием фруктозы; возможно использование иммобилизованных ферментов при производстве сыров, стабилизации молока и удалении лактозы из молочных продуктов.

Вы здесь: Главная Пищевая промышленность Лекционный материал по дисциплине “Пищевая химия”